No. of Printed Pages: 2

PJ-275

100220

I Semester M.Sc. Examination, February - 2020 (CBCS - Y2K17/Y2K14 Scheme)

MATHEMATICS

M104T: Ordinary Differential Equations

Time: 3 Hours Max. Marks: 70 Instructions: (i) Answer any five full questions. All questions carry equal marks. (ii) Prove that W{ $\phi_j(x)$, j=1 to n}=W{ $\phi_j(x_0)$, j=1 to n} exp $\left\{-\int_{x_0}^x a_1(t)/a_0(t)dt\right\}$, 1. (a) where $\{\phi_j(x), j=1 \text{ to } n\}$ are n solutions of $L_n y=0$ on I and $x, x_0 \in I$. Discuss any two deductions from this result. Verify Lagrange's identity for $x^2y'' - 3xy' + 3y = 0$. (b) Establish that $L_n^{**} = L_n$. 2. 5 Explain the method of variation of parameters of solving $L_n y = b(x)$. (b) 9 3. State and prove Sturm's comparison theorem on the zeros of (a) 9 $\{p(x)y'\}' + q(x)y = 0$ on [a, b] and illustrate it with an example. (b) Is the existence and uniqueness theorem is valid for the IVP: $y'=5y^{4/5}$; y(0) = 0 in the domain $|x| \le 1$ and $|y| \le 1$? Discuss it. Obtain the eigen function expansion formula and hence expand e^x in 4. (a) terms of orthogonal eigen functions of $y'' + \lambda y = 0$; $y(0) = y(\pi)(\lambda > 0)$. 9 Outline Green's method of solving non-homogeneous eigen value (b) 5 problem. 5. Using the Frobenius method obtain the Laguerre polynomial from the (a) differential equation $xy'' + (1-x)y' + \alpha y = 0$. 8 Derive the Rodrigue's formula for Laguerre polynomials. (b) 6

- Prove the orthogonality of the Chebyshev polynomial of the first kind. (a)
- (b) $\frac{1-t^2}{1-2tx+t^2}$ is the generating function of $T_n(x)$. Prove this statement. 6
- For the system $\frac{d}{dt}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ find the fundamental matrix and the general solution. Find e^{tA} for the coefficient matrix A in the above system.
- (a) Find the nature of the critical point of the system 8. $\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + 2y + x \cos y \\ -y - \sin y \end{bmatrix}.$ 7
 - Given the system: $\frac{d}{dt}\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x + 2x^2 + 2y^2 \\ -y + xy \end{bmatrix}$, determine the stability of its critical point (0, 0) by constructing the Liapunov function.